东莞市保沃电子有限公司
电 话:0769-87282516
联系人:15920252128(陈先生)
销售部QQ:870010308 / 2482751716 / 2012618174
传 真:0769-83513559
E-mail:dgbaowo@163.com
地 址:广东省东莞市塘厦镇塘厦工业路10号1栋
UU型共模电感 |
|
发布时间:2019-10-16 11:29:52 点击率: | |
|
|
下载说明 | |
共模电感
共模电感(Common mode Choke),也叫共模扼流圈,常用于电脑的开关电源中过滤共模的电磁干扰信号。在板卡设计中,共模电感也是起EMI滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。
目录
共模电感理论知识
计算机内部的主板上混合了各种高频电路、数字电路和模拟电路,它们工作时会产生大量高频电磁波互相干扰,这就是EMI。EMI还会通过主板布线或外接线缆向外发射,造成电磁辐射污染,影响其他的电子设备正常工作。
PC板卡上的芯片在工作过程中既是一个电磁干扰对象,也是一个电磁干扰源。总的来说,我们可以把这些电磁干扰分成两类:串模干扰(差模干扰)与共模干扰(接地干扰)。以主板上的两条PCB走线(连接主板各元件的导线)为例,所谓串模干扰,指的是两条走线之间的干扰;而共模干扰则是两条走线和PCB地线之间的电位差引起的干扰。串模干扰电流作用于两条信号线间,其传导方向与波形和信号电流一致;共模干扰电流作用在信号线路和地线之间,干扰电流在两条信号线上各流过二分之一且同向,并以地线为公共回路。
如果板卡产生的共模电流不经过衰减过滤(尤其是像USB和IEEE 1394接口这种高速接口走线上的共模电流),那么共模干扰电流就很容易通过接口数据线产生电磁辐射——在线缆中因共模电流而产生的共模辐射。美国FCC、国际无线电干扰特别委员会的CISPR22以及我国的GB9254等标准规范等都对信息技术设备通信端口的共模传导干扰和辐射发射有相关的限制要求。为了消除信号线上输入的干扰信号及感应的各种干扰,我们必须合理安排滤波电路来过滤共模和串模的干扰,共模电感就是滤波电路中的一个组成部分。
共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作
共模电感工作原理
为什么共模电感能防EMI?要弄清楚这点,我们需要从共模电感的结构开始分析。
共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电
图2 图3
流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。
事实上,将这个滤波电路一端接干扰源,另一端接被干扰设备,则La和C1,Lb和C2就构成两组低通滤波器,可以使线路上的共模EMI信号被控制在很低的电平上。该电路既可以抑制外部的EMI信号传入,又可以衰减线路自身工作时产生的EMI信号,能有效地降低EMI干扰强度。
国内生产的一种小型共模电感,采用高频之杂讯抑制对策,共模扼流线圈结构,讯号不衰减,体积小、使用方便,具有平衡度佳、使用方便、高品质等优点。广泛使用在双平衡调音装置、多频变压器、阻抗变压器、平衡及不平衡转换变压器...等。
还有一种共模滤波器电感/EMI滤波器电感采用铁氧体磁心,双线并绕,杂讯抑制对策佳,高共模噪音抑制和低差模噪声信号抑制,低差模噪声信号抑制干扰源,在高速信号中难以变形,体积小、具有平衡度佳、使用方便、高品质等优点。广泛使用在抑制电子设备EMI噪音、个人电脑及外围设备的 USB线路、DVC、STB的IEEE1394线路、液晶显示面板、低压微分信号...等。
共模电感漏感差模
对理想的电感模型而言,当线圈绕完后,所有磁通都集中在线圈的中心内。但通常情况下环形线圈不会绕满一周,或绕制不紧密,这样会引起磁通的泄漏。共模电感有两个绕组,其间有相当大的间隙,这样就会产生磁通泄漏,并形成差模电感。因此,共模电感一般也具有一定的差模干扰衰减能力。
在滤波器的设计中,我们也可以利用漏感。如在普通的滤波器中,仅安装一个共模电感,利用共模电感的漏感产生适量的差模电感,起到对差模电流的抑制作用。有时,还要人为增加共模扼流圈的漏电感,提高差模电感量,以达到更好的滤波效果。
共模电感
共模电感材料优劣
磁环类型的铁芯优点:
高初始导磁率(这个是共模电感的基本要求)、高饱和磁感应强度、温度较之铁氧体稳定(可以理解为温升小),频率特性比较灵活,因为导磁率高,很小就可以做出很大的感量,适应频率比较宽;
整体优势:
因为初始导磁率是铁氧体的5-20倍,对传导干扰的抑制作用远大于铁氧体;
纳米晶的高饱和磁感应强度比铁氧体的好,所以在大电流下不易饱和;
温升较之UF系列的要低,某人实际测试:室温下要低将近10度(个人测试值仅作参考);
结构上的灵活令其适应性好,从加工工艺上进行改变,即可适应不同需求(见过节能灯上用的磁环电感,使用相当灵活);
分布电容会更小,因为绕线的面积更宽,体积也相对较小;
环行所用匝数少一点,分布参数小一点,效率占优。
整体劣势:
磁环孔径小,机器难以穿线,需要人工去绕,费时费力,加工成本高,效率低。而在成本压力日益增加的同时,这一点已尤为重要了。
耐压方面较之UF优势不大:因为可以看到很多磁环共模中间使用扎线带隔开的,这样不是很可靠,有的中间拉开一定距离,线用点胶固定,时间长了,可靠性怎么样呢?如果电感量要求比较大,线会挤在一起,安全性上有一点疑惑。
安装不便,故障率较高。
应用:
因为成本的因素,磁环大多用在大功率的电源上,某人形容:“小功率的用磁环太了”,是有道理的。
当然因为体积小,对体积有要求的小功率电源,采用磁环的也是很OK的选择。
综合性能比起来,优于UF系的。如果成本压力不大的项目,可以考虑用磁环的。某实际测试传导,用磁环的余量要低更多。而且感量还比UF的小。
再说说UF/UU系列的共模
材料:基本上为铁氧体,当然这铁氧体也有区别的,一般有MXO-锰锌类和NXO-镍锌类。镍锌类的主要优点是:初始磁导率低(小于1000u),但是可以工作在比较高的频率(大于100MHZ)下,保持磁导率不变。很强很伟大。
NXO比MXO电阻率高。利用铁氧体对高频杂波的类似阻尼的作用将高频杂波以热能的方式释放出来,这就解释了共模电感的温度问题。
整体优势:
重要的一点:成本低(某人用的这个是0.9元人民币),可以用机器绕、高效,常用UU9.8或UU10.5;
有骨架,绕制工艺应该会更好控制,可以做更高的电感量;
耐压及可靠性要好?针对磁环共模的;
好插件,好安装。四个脚,孔位对了就没一点问题;基本用在小电流的电源上,因为线径不可以用很粗的,故电流不能太大;
整体劣势:
空间因素:封装位置大,maybe是因为比较强壮,不像磁环那么小巧玲珑;
发热比较严重,也是根据我实测的:90V输入满载室温下,可以到快90度;
应用:
一般用在成本控制比较严格的、抑或小功率的场合
共模电感设计因素
在一些主板上,我们能看到共模电感,但是在大多数主板上,我们都会发现省略了该元件,甚至有的连位置也没有预留。这样的主板,合格吗?
不可否认,共模电感对主板高速接口的共模干扰有很好的抑制作用,能有效避免EMI通过线缆形成电磁辐射影响其余外设的正常工作和我们的身体健康。但同时也需要指出,板卡的防EMI设计是一个相当庞大和系统化的工程,采用共模电感的设计只是其中的一个小部分。高速接口处有共模电感设计的板卡,不见得整体防EMI设计就。所以,从共模滤波电路我们只能看到板卡设计的一个方面,这一点容易被大家忽略,犯下见木不见林的错误。
只有了解了板卡整体的防EMI设计,我们才可以评价板卡的优劣。那么,的板卡设计在防EMI性能上一般都会做哪些工作呢?
1.主板Layout(布线)设计
对的主板布线设计而言,时钟走线大多会采用屏蔽措施或者靠近地线以降低EMI。对多层PCB设计,在相邻的PCB走线层会采用开环原则,导线从一层到另一层,在设计上就会避免导线形成环状。如果走线构成闭环,就起到了天线的作用,会增强EMI辐射强度。
信号线的不等长同样会造成两条线路阻抗不平衡而形成共模干扰,因此,在板卡设计中都会将信号线以蛇形线方式处理使其阻抗尽可能的一致,减弱共模干扰。同时,蛇形线在布线时也会大限度地减小弯曲的摆幅,以减小环形区域的面积,从而降低辐射强度。
在高速PCB设计中,走线的长度一般都不会是时钟信号波长1/4的整数倍,否则会产生谐振,产生严重的EMI辐射。同时走线要保证回流路径小而且通畅。对去耦电容的设计来说,其设置要靠近电源管脚,并且电容的电源走线和地线所包围的面积要尽可能地小,这样才能减小电源的纹波和噪声,降低EMI辐射。
当然,上述只是PCB防EMI设计中的一小部分原则。主板的Layout设计是一门非常复杂而精深的学问,甚至很多DIYer都有这样的共识:Layout设计得与否,对主板的整体性能有着极为重大的影响。
2.主板布线的划断
如果想将主板电路间的电磁干扰完全隔离,这是不可能的,因为我们没有办法将电磁干扰一个个地“包”起来,因此要采用其他办法来降低干扰的程度。主板PCB中的金属导线是传递干扰电流的罪魁祸首,它像天线一样传递和发射着电磁干扰信号,因此在合适的地方“截断”这些“天线”是有用的防EMI的方法。“天线”断了,再以一圈绝缘体将其包围,它对外界的干扰自然就会大大减小。如果在断开处使用滤波电容还可以更进一步降低电磁辐射泄露。这种设计能明显地增加高频工作时的稳定性和防止EMI辐射的产生,许多大的主板厂商在设计上都使用了该方法。
3.主板接口的设计
不知大家是否注意到,主板都会附送一块开口的薄铁挡片,其实这也是用来防EMI的。虽然机箱EMI屏蔽性能都不错,但电磁波还是会从机箱表面的开孔处泄漏出来,如PS/2接口、USB接口以及并、串口等的开口处。孔的大小决定了电磁干扰的泄露程度。开口的孔径越小,电磁干扰辐射的削弱程度越大。对方形孔而言,L就是其对角线长度。
使用了挡片之后,挡片上翘起的金属触片会和主板上的输入输出部分很好地通过机箱接地,不但衰减了EMI,而且减小了方孔的尺寸,进一步缩小L值,从而可以更有效地屏蔽电磁干扰辐射。
上述三点只是主板设计中除电路设计之外的几个主要防EMI设计,由此可见,主板的防EMI设计是一个整体的概念,如果整体的设计不合格,就会带来较大的电磁辐射,而这些也不是一个小小的共模电感所能弥补的。
共模电感
共模电感必要因素
共模电感缺失=防EMI性能低下?这样的说法显然是颇为片面的。
诚然,由于国家的EMI相关规范并不健全,部分厂商为了省料就钻了这个空子,在整体防EMI性能上都大肆省料压缩成本(其中就包括共模电感的省略),这样做的直接后果就是主板防EMI性能极其低下;但是对于那些整体设计,用料不缩水的主板,即使没有共模电感,其整体防EMI性能仍能达到相关要求,这样的产品仍然是合格的。因此,单纯就是否有共模电感这一点来判断主板的优劣并不恰当.
共模电感测量诊断
1.概述
电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之间。在设计性能的扼流圈时,这个误差的影响可能是不容忽视的。
2.漏感的重要性
漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即使没有磁芯,其所有磁通都集中在线圈“芯”内。但是,如果环形线圈没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。这种效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”,这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。
如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感基本与无磁芯的电感一样。
3.共模扼流圈综述
滤波器设计时,假定共模与差模这两部分是彼此独立的。然而,这两部分并非真正独立,因为共模扼流圈可以提供相当大的差模电感。这部分差模电感可由分立的差模电感来模拟。
为了利用差模电感,在滤波器的设计过程中,共模与差模不应同时进行,而应该按照一定的顺序来做。首先,应该测量共模噪声并将其滤除掉。采用差模抑制网络(Differential Mode Rejection Network),可以将差模成分消除,因此就可以直接测量共模噪声了。如果设计的共模滤波器要同时使差模噪声不超过允许范围,那么就应测量共模与差模的混合噪声。因为已知共模成分在噪声容限以下,因此超标的仅是差模成分,可用共模滤波器的差模漏感来衰减。对于低功率电源系统,共模扼流圈的差模电感足以解决差模辐射问题,因为差模辐射的源阻抗较小,因此只有极少量的电感是有效的。
尽管少量的差模电感非常有用,但太大的差模电感可以使扼流圈发生磁饱和。
4.用LISN原理测量共模扼流圈饱和特性的方法
测量共模线圈磁芯(整体或部分)的饱和特性通常是很困难的。通过简单的试验可以看出共模滤波器的衰减在多大程度上受由60Hz编置电流引起的电感减小量的影响。进行此项测试需要一台示波器和一个差模抑制网络(DMRN)。首先,用示波器来监测线电压。按如下方法从示波器的A通道输入信号,将示波器的时间基准置为2ms/div,然后将触发信号加在A通道上,在交流电压达到峰值时会有线电流产生,此时滤波器效能的降级是意料中的事情。差模抑制网络(DMRN)的输入端连接到LISN,输出端用50的阻抗进行匹配且与示波器的B通道相连。当共模扼流圈工作在线性区时,在输入电流波动期间,B通道监测到的发射增加值不超过6—10dB。在线电压峰值期间,桥式整流器正向导通且传送充电电流。
如果共模扼流圈达到饱和,那么在输入浪涌增加时,发射将会增加。如果共模扼流圈达到强饱和,发射强度与不加滤波器时的情况是一样的,也就是说很容易达到40dB以上。
这些实验数据可用其他方法来解释。发射小值(线电流为0的时候)是滤波器无偏置电流时表现出来的效果。峰值发射与小发射的比率,即降级因子,用来衡量线电流偏移量对滤波器实际效果的影响。降级因子较大表明共模扼流圈磁芯完全没有得到恰当的使用,较好的滤波器的“固有降级因子”差不多在2—4之间。它是由两种现象产生的:,60Hz充电电流引起的电感减小(如上所述);第二,桥式整流器的正向及反向导通。共模发射的等效电路由一个阻抗约为200pF的电压源、二极管阻抗和LISN的共模阻抗组成。当桥式整流器正向偏置时,在源阻抗、25和LISN共模阻抗之间会产生分压现象。当桥整流器反向偏置时,在源阻抗、整流桥反偏电容、LISN之间产生分压现象。当二极管整流桥反向偏置电容较小时,对共模滤除有一定效果。当整流桥正向偏置时则对共模滤除没有影响。
由于产生了分压,固有降级因子的预期值为2左右。实际值的变化相当大,主要取决于源阻抗和二极管整流桥反向偏置电容的实际大小。在Flugan发明的一个电路中,正是应用这个原理来减小镇流器的传导发射的。
5.用电流原理测量共模扼流圈饱和特性的方法
如果测试人员相当谨慎,那么就可以采取类似MIL-STD-461中的测试装置来检测共模扼流圈的饱和特性。这个原理的应用如下:测试时采用两只电流探头,低频探头监测线电流,高频探头仅测量共模发射电流。线电流监视器作为触发源。不过,使用电流探头的一个隐患是差模电流衰减是管芯内绕组导线对称性的函数。如果精心合理安排绕线布局的话,30dB左右的差模电流衰减是能够得到的。即使达到这个衰减值,测得的差模分量也可能超过预期的共模分量值。可用如下两项技术来解决这一问题:,将一只6kHz转折频率的高阶高通滤波器与示波器串联(注意应用50的终端阻抗进行匹配)。第二,在每只10μF的电容与电源总线之间接入一根导线。为了测量共模辐射,电流探头应夹在这些载有极小线电流的导线近旁。
6.共模扼流圈内存在的差模与共模磁通
为了快速且浅显地介绍共模扼流圈的作用,可考虑采用以下论述:“共模扼流圈管芯两侧的磁场相互抵消,因此不存在磁通使管芯饱和。”尽管这种论述对共模扼流圈作用的直觉叙述具体化了,但实质上并非如此。
7.漏感综述
共模扼流圈能发挥一定的作用是由于μcm比μdm大好几个数量级的缘故,因为共模电流通常很小,可以通过使L/D保持在较低值来获得更小的μdm。
为了得到共模电感,同时又要使差模电感小,是采用横截面积较大的磁芯绕制成多匝线圈。采用较大的螺旋管磁芯,也并非一定要这样的磁芯,可在共模扼流圈内并入有效的差模电感。因为差模磁通是远离磁芯(环形结构)的,因此可能会产生极强的辐射。尤其是滤波器安装在PCB板上的情况下,这种辐射可以耦合到电源线,使传导发射增强。当磁性材料被带到场内时(例如,环形磁芯放置在铁壳里),差模磁导率就可能会显著地增加,从而由于差模电流而导致磁芯的饱和。
8.无辐射共模扼流圈结构
为了实现有效的滤波器设计,磁通离开磁芯引起的辐射问题必须予以解决。其办法有是将差模磁通限制在磁性结构物体中(壶形铁芯),或者是为差模磁通(E形铁芯)提供一条高磁导率的路径。
9.壶形铁芯结构
如果共模扼流圈采用壶形铁芯结构,那么就需两个绕轴。壶形铁芯窗格里的两组线圈及其产生的磁通路径。同时也表明了同一结构条件下的差模磁通路径。
10.E形铁芯结构
另外还有一种共模扼流圈,它比环形磁芯线圈更易绕制,但比壶形铁芯线圈的辐射更厉害,E形铁芯线圈共模磁通将外部引线上的两组线圈都联系在一起了。为了获得较高的磁导率,在外部引线上应没有空气隙。另一方面,差模磁通将外部引线和中心引线联系起来。差模路径中的磁导率可以通过使中心引线彼此隔开来取得,中心引线是产生辐射的主要区域。
共模电感要求
(1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路;
(2)当线圈流过瞬时大电流时,磁芯不要出现饱和;
(3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿;
(4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的承受能力。
通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。
|
|
下载地址: | |
上一篇:没有了 | |
下一篇:没有了 |